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Spatial management has been adopted worldwide to mitigate habitat impacts while achieving fisheries management objectives. However,
there is little theory or practice for predicting the impact of spatial regulations on future fishery production; this would provide scientific basis
for greater flexibility in fisheries management when balancing fishery and conservation goals. We propose that predicting changes in fishery
production resulting from human activities within specific habitats is a “Grand Challenge” for habitat science in the coming decade(s). We
then outline three difficulties in resolving this Grand Habitat Challenge, including: (i) stage-structured responses to habitat impacts, (ii) nonlo-
cal responses, and (iii) mechanistic associations among habitat variables. We next discuss analytical approaches to address each difficulty, re-
spectively: (i) ongoing developments for spatial demographic models; (ii) individual movement models and rank-reduction approaches to
identify regional variability; (iii) causal analysis involving structural equation models. We demonstrate nonlocal effects in detail using a
diffusion-taxis movement model applied to sablefish (Anoplopoma fimbria) in the Gulf of Alaska and discuss all three approaches for deep-
sea corals. Despite isolated progress to resolve individual difficulties, we argue that resolving this Grand Habitat Challenge will require a coor-
dinated commitment from science agencies worldwide.
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Introduction
Modern efforts to provide a scientific basis for fisheries manage-

ment can be traced back over 150 years (Smith, 2007). During

this time, fisheries scientists have adopted ecological, mathemati-

cal, econometric, and statistical techniques (among others) to

predict future changes in fishery production arising due to
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present-day changes in fishery regulations. In the United States, a

long history of co-development has resulted in legislation obligat-

ing fisheries managers to maintain catch levels (with few excep-

tions) below the rate that corresponds to scientific advice

regarding maximum sustainable yield, MSY, and to develop re-

building plans for species with a biomass far below the level pro-

ducing MSY (Methot, 2009); there is a similar regulatory

emphasis upon “stock status” within the ICES fisheries manage-

ment framework (ICES, 2019). This framework gains legitimacy

in part from a long history of predicting changes in future fishery

production resulting from present-day regulations, through a the-

oretically grounded and empirically validated understanding of

individual growth using per-recruit models (Beverton and Holt,

1957) as well as empirically derived biomass-dynamic or age-

structured production models (Schaefer, 1954). These two meth-

ods for predicting future fishery production have subsequently

been synthesized within “integrated” assessment models that

combine model structures and parameters derived from process

research with information from monitoring data (Maunder,

2008). Integrated stock-assessment models are typically used to

identify stock status while leaving fisheries managers free to iden-

tify the set of regulations needed to achieve annual catch targets

that are consistent with long-term management objectives. There

is extensive research to empirically evaluate the successes and fail-

ures of stock assessment to predict productivity and thereby sup-

port effective fisheries management (Gutiérrez et al., 2011;

Cardinale et al., 2013; Neubauer et al., 2013).

Simultaneously, there is a parallel history for science to priori-

tize the conservation or restoration of habitats as well as mitigate

impacts from the fishing industry (e.g. trawl exclusion areas) as

well as other sectors (e.g. eutrophication from agriculture, off-

shore and nearshore development projects, noise from shipping).

In the United States, this history resulted in a legal requirement

for fisheries managers to periodically consider updates to areas

designated as essential fish habitat (EFH) and habitat areas of

particular concern (HAPC), as well as scientific interpretation re-

garding multiple levels of habitat information that can be used as

scientific support for EFH designation (Yoklavich et al., 2010).

Information regarding EFH and HAPC is then used during con-

sultations with fisheries management councils (when regulating

fishing sectors) and other government agencies (regarding regula-

tions upon agriculture, shipping, nearshore development, and

other activities). However, EFH is typically designated on the ba-

sis of habitat-specific distribution and density for target (com-

mercially harvested) and nontarget (captured as bycatch) fishes in

fishery management plans, rather than predicting how habitat

impacts will affect future fishery productivity. Alternatively, there

is a growing interest in “benthic habitat-impact assessments” pre-

dicting fishery impacts on benthic organisms based on their re-

covery rates after disturbance, combined with maps of benthic

communities and fishing (Hiddink et al., 2017; Rijnsdorp et al.,

2018; Sciberras et al., 2018). These assessments are mandated by

the European Marine Strategy Framework Directive (Rice et al.,

2012), as implemented within the ICES Working Group on

Fisheries Benthic Impact and Trade-Offs (Eigaard et al., 2020),

and separately in the United States, e.g. during EFH designations

in waters near Alaska (Smeltz et al., 2019). Although benthic

habitat-impact assessments predict recovery rates for biogenic

habitat after human disturbance, they do not typically predict the

likely impact of contemporary spatial regulations on future fish-

ery production. While there are periodic efforts to develop heurist

and statistical models predicting future changes in fishery pro-

duction from habitat impacts (e.g. fig. 2 of McConnaughey et al.,

2020), these are not as widely used or enacted in national policy

to the same extent as analogous efforts for stock assessment.

From this brief history, we conclude that stock assessment is

tasked with predicting likely changes in fishery production from

regulatory changes, while habitat science remains primarily fo-

cused on describing habitat-specific distribution, density, demog-

raphy, and benthic recovery rates. In the following, we argue that

the task of predicting likely future changes in fishery production

arising from spatial regulations of both fishing and non-fishing

sectors at fine-spatial scales is a “Grand Challenge” for habitat sci-

ence. We further argue that such predictions would increase the

relevance of habitat science to fisheries managers, both because it

allows participatory evaluation of likely impacts of habitat

changes on fishery productivity (i.e. sustainable fishing opportu-

nities) and because it encourages validation and refinement of

scientific information (Stephenson and Lane, 1995). We first out-

line a “biomass-dynamic habitat model” via analogy to biomass-

dynamics models used for stock assessment. This model predicts

changes in future population biomass at different locations, given

the prevailing biological and environmental conditions defining

habitats at those locations. This model could be used to predict

future production of nontarget species (e.g. benthic infauna),

thus resembling benthic habitat-impact assessments and thereby

informing trade-offs between exploitation and conservation, or

targeted species (e.g. commercial fishes), thereby predicting

changes in sustainable fishery harvest from habitat impacts.

However, we acknowledge that some modification is likely

needed for specific applications (for example individual move-

ment likely is less important for benthic infauna than migratory

fishes). We then define three difficulties that must be addressed

to resolve this Grand Habitat Challenge and explore approaches

to each difficulty via extensions to the biomass-dynamic habitat

model. This includes a detailed illustration of how fine-scale habi-

tat usage can be inferred from movement analysis and tagging

data. We note limitations resulting from data and knowledge

gaps, and how these can be addressed, while also illustrating ap-

plication for deep-sea corals. Finally, we recommend future

efforts to coordinate research in the United States and worldwide

to address this Grand Habitat Challenge by 2030.

Defining the biomass-dynamic habitat model
Since the 1950s, stock-assessment scientists have used biomass-

dynamics (a.k.a. surplus production) models to communicate

principles regarding maximum sustainable yield as well as to pre-

dict likely change in future fishery production arising from regu-

lations on fishery removals. Modern production models predict

the change in biomass DB using three variables: current biomass

B, measured environmental conditions as well as residual varia-

tion X , and catch C (Figure 1). The impact of current biomass on

future yield is typically represented using a production function

approximating density-dependent and -independent demo-

graphic processes, fixed and random effects are estimated to ac-

count, respectively, for measured and missing covariates, and

catch C typically includes both directed harvest as well as indirect

mortality such as catch-and-release mortality rates and bycatch.

Importantly, fishery catch is included such that the outcome

resulting from an exogenous change in fishery catch (i.e. due to

harvest regulation) can be predicted.

2 J. T. Thorson et al.
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By contrast, habitat scientists are often trained to fit species dis-

tribution models (SDMs) to opportunistic records and field-

sampling data, and then use predicted species densities to interpret

environmental drivers, plan future sampling, and prioritize areas

for protection (Leathwick et al., 2006; Winship et al., 2020). These

SDMs often include many covariates and sometimes include resid-

ual variation that is spatially correlated. However, SDMs often do

not explicitly predict annual production of biomass DB, or account

for mortality associated with fishery operations (where we proceed

using the term “catch” and notation C to represent both harvest

and mortality due to gear contact and physical disturbance to main-

tain similar notation to biomass-dynamic models). They therefore

do not include the variables needed to compute the likely change in

biomass resulting from changes in spatial distribution of removals.

Exceptions exist, including analyses that represent changes in bio-

mass as a function of fishery removals and local productivity

(Thorson et al., 2017), or analyses that combine density predictions

with subsequent information about fishery impacts and recovery

rates (Smeltz et al., 2019; Rijnsdorp et al., 2020). These exceptions

demonstrate that accounting for production of biomass can be as

simple as specifying a fixed rate of natural mortality and/or recov-

ery, and typically aggregate data-poor species into assemblages and/

or use meta-analysis to identify mortality/recovery rates for these

assemblages (Hiddink et al., 2017; Sciberras et al., 2018; Rijnsdorp

et al., 2020). However, analyses incorporating fishery removals

within an SDM (as advocated here) have not typically been used to

designate EFH or otherwise inform spatial management.

We refer to the simplest version of these models as a biomass-

dynamic habitat model (Figure 1) and illustrate that it combines

variables used in biomass-dynamics models (from stock assess-

ment) and SDMs (from habitat assessment). We acknowledge

two distinctions while noting that the following theory could ap-

ply regardless of these choices:

(1) We use “Eulerian” notation in the following, wherein we

track biomass bðsÞ at each location s; we could instead use
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Figure 1. Schematic representations showing the relationship among variables in a conventional biomass-dynamics population model
(bottom left panel, a.k.a. “surplus production model”) used for stock assessment and an SDM (top-right panel), and how the two can be
combined in a biomass-dynamic habitat model (bottom-right panel). These models include a population biomass, either summed across
space B or defined as bðsÞ for each location s, and the “dynamics” models also include production of biomass DB or DbðsÞ. All models include
one or more covariates X or xðsÞ, and dynamics models include an additional assumed response to harvest C or cðsÞ. These variables are
linked by a specified form for environmental responses (red boxes and arrows), an assumed response to harvest (blue boxes and arrows), and
a density-dependent response of production to current biomass (green boxes and arrows).
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“Lagrangian” notation wherein we track the location siðtÞ of

each individual i at each time t . Lagrangian notation is often

adopted for individual-based models (IBMs), and these

IBMs can typically be approximated using Eulerian notation

[see Cornell et al. (2019) for more details].

(2) Previous authors have distinguished mechanistic versus correl-

ative SDMs (Kearney and Porter, 2009), where mechanistic

(a.k.a. process-based) SDMs involve specifying environmental

responses a priori based on spatial layers and process research,

while correlative (a.k.a. statistical) SDMs involve estimating

environmental responses (or spatially correlated residual varia-

tion) based upon monitoring and opportunistic data (e.g.

Rougier et al., 2015). The biomass-dynamic habitat model

could be used as a mechanistic SDM by fixing the value of

parameters based on laboratory and field experiments, or a

correlative SDM by estimating parameters based on fit to

monitoring data. Fixing some parameters while estimating

others therefore allows the biomass-dynamic habitat model to

include a wide range of behaviours from both mechanistic and

correlative approaches, and we advocate incorporating both

process-research and monitoring data in this way. We con-

clude by noting that the following theory (described for the

biomass-dynamic habitat model) could therefore be applied to

either mechanistic or correlative SDMs.

In the following, we describe the simplest analytical approach for

each method; for example by using linear models for stage-

structured dynamics (a “Leslie matrix”) or movement rates.

However, these concepts could be extended to include nonlinear

functions for survival and movement, and their capacity for ex-

tension is part of their benefit.

Three difficulties to addressing this grand habitat
challenge
The biomass-dynamic habitat model includes the minimal com-

ponents necessary for predicting potential future changes in fish-

ery production from spatial regulations; that is an explicit

representation at each location s of changing biomass DbðsÞ, en-

dogenous dynamics including density dependence given current

density bðsÞ, environmental covariates xðsÞ, and fishery impacts

cðsÞ. We note three difficulties to using this simple model to ad-

dress the full range of habitat-impact and regulatory questions

that are often addressed:

(1) Stage-structure: Metabolic rates typically vary as an individ-

ual grows in size. For example, individual growth (in units

biomass per time) typically accelerates and then decelerates

as an individual ages following a von Bertalanffy growth and

allometric weight-at-age function, and this underlies classic

yield-per-recruit management strategies that identify optimal

yield at intermediate exploitation rates (Andersen, 2019). We

note that many existing efforts to inform habitat protection

using SDMs approximate each stage separately (e.g. Rooney

et al., 2018), and then stack resulting stage-structured predic-

tions without explicitly modelling individual transition rates
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Figure 2. Schematic representation contrasting two approaches to Challenge # 1: Stage-Structured Dynamics visualized at a single location: (1)
a biomass-dynamic habitat model (see Figure 1 for details) with saturated stage dynamics involving separate effects of biomass, catch, and
environmental conditions on productivity for each state (left-hand panel) and (2) a state-structured Leslie-matrix model where productivity
follows a stage-transition matrix G, and where responses to covariates and catches are simplified by identifying similar selectivity or
environmental responses among adjacent stages (right-hand panel).
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among stages, and this obscures questions regarding cumula-

tive impacts across multiple stages.

(2) Nonlocal effects: The biomass-dynamic habitat model also

assumes that environmental covariates xðsÞ and fishery

impacts cðsÞ affect production DbðsÞ at each location s sepa-

rately and in isolation. However, this assumption precludes

considering how habitat changes at one location (e.g. where

pelagic larvae settle and grow as juveniles) affects production

at distant locations (e.g. subsequent juvenile and adult

production).

(3) Mechanisms affecting environmental conditions: The biomass-

dynamic habitat model does not explicitly model potential

dependencies among habitat variables, and therefore cannot

identify the cumulative effect of changing covariates impact-

ing productivity via both direct and indirect pathways. For

example, many demersal fishes are associated with a specific

range of seafloor depths (bathymetry). However, this pattern

could arise due to a preference for a specific level of light,

seafloor temperature, or many other factors. Therefore, pre-

dicting the likely consequences of changing temperature

(due to climate change) or light levels (due to increased sus-

pended sediment associated with coastal development)

requires understanding both the impact of each habitat vari-

able on population productivity (“direct effects”), and also

the impact of each habitat variable on other habitat variables

(“indirect effects”).

In the following, we propose minimal extensions to the biomass-

dynamic habitat model that are required to address each of these

difficulties, while noting previous studies that provide prelimi-

nary illustration for each method.

Difficulty # 1: stage-structured effects
The first extension involves specifying that habitat effects

(“exogenous dynamics”) and density dependence (“endogenous

dynamics”) vary widely for different stages of marine organisms

(Figure 2). We refer to different demographic rates among sizes,

ages, or sexes as “stage-structure”. Stage-structured habitat

modelling requires tracking densities bcðsÞ for each stage c at each

location s, as well as distinguishing how stage-specific productiv-

ity DbcðsÞ changes due to densities of that and other stages as well

as environmental conditions. Similar to population-dynamics

models, it is easy to incorporate stage-structured endogenous dy-

namics by including a stage-transition matrix:

Dbc1 sð Þ ¼
Xnstages

c2¼1

gc1;c2bc2ðsÞ; (1)

that is Db sð Þ ¼ Gb sð Þ, where stage-transition matrix G includes

the effect gc1;c2 of biomass for each other stage c2 on productivity

of stage c1. The stage-transition matrix can be interpreted as rep-

resenting growth and mortality rates under particular growth and

mortality models (Kristensen et al., 2014), expanded to separately

track empirical moulting and growth rates (Cao et al., 2020), re-

interpreted to represent multi-species interactions (Thorson

et al., 2019), or replaced with a nonlinear function representing

delayed recruitment and individual growth (Thorson et al.,

2015b).

Importantly, process research can reveal how elements of the

stage-transition matrix (including size, growth rate, and natural

mortality) vary among different habitats, such that stage-

transition matrix GðsÞ can be approximated for each location. It

is then easy to calculate intrinsic growth rate rðsÞ as the dominant

eigenvalue of GðsÞ (McAllister et al., 2001). Intrinsic growth rate

then serves as a “common currency” for comparing habitat qual-

ity across different habitats and species (Chesson, 2000;

Shoemaker and Melbourne, 2016). Intrinsic growth rate is already

used to calculate management target and limit reference points

for marine populations (Zhou et al., 2012), so it also provides a

ready-made reference point for comparing habitat importance or

evaluating alternative regulatory scenarios using the biomass-

dynamics habitat model. However, calculating rðsÞ also has draw-

backs. Most importantly, it fails to account for nonlocal popula-

tion drivers (resulting from seasonal or ontogenic movement),

e.g. how production in adult feeding groups is associated with

survival at geographically distant juvenile habitat. We therefore

address this difficulty next.

Difficulty # 2: nonlocal effects
The biomass-dynamic habitat model specifies that covariates xðsÞ
and catch cðsÞ affect production DbðsÞ at that single location and

no other; we call this the “local dynamics” assumption. We envi-

sion separate ways to relax this assumption for covariates and for

catches (Figure 3).

Nonlocal covariates
Nonlocal covariates will be important whenever habitat quality is

associated with atmospheric or oceanographic “teleconnections”.

For example, bowhead whales in the Chukchi Sea prey upon

euphausiids that grow in the Bering Sea and are then advected

northward (Berline et al., 2008), such that bowhead habitat selec-

tion is mechanistically correlated with environmental conditions

at geographically distant conditions that drive Bering Sea euphau-

siid abundance. We refer to these nonlocal correlations as

“ecological teleconnections”. Ecological teleconnections can be

estimated from time-series data by applying empirical orthogonal

function (EOF) analysis to the matrix of covariates at each loca-

tion and time, extracting the dominant mode(s) of variability,

and then including the resulting indices in a spatially varying co-

efficient model. EOF analysis is widely used to identify oceano-

graphic indices such as the Pacific Decadal Oscillation (Thorson

et al., 2020b), while spatially varying coefficient models have been

adapted previously for use in SDMs (Bacheler et al., 2012;

Hunsicker et al., 2013; Thorson, 2019). Combining these two

approaches allows Db s1ð Þ at a location s1 to be highly correlated

with a covariate xðs2Þ even when these locations are geographi-

cally distant. Importantly, regional indices identified using EOF

may be predictive of local processes during some oceanographic

regimes but not others (Litzow et al., 2018), and EOF can be gen-

eralized to maximize predictive power for individual species or

processes (Thorson et al., 2020a).

Advective-diffusive movement involving a habitat
suitability function
By contrast, nonlocal density dependence and catches can be in-

corporated by explicitly modelling individual movement.

Movement rates are often estimated by models using Lagrangian

notation (Jonsen et al., 2003; Johnson et al., 2008), whereas
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landscale-level properties and spatial population-dynamics are of-

ten studied using Eulerian notation (Skellam, 1951; Bolker and

Pacala, 1997; Okubo et al., 2001). For studying habitat-specific

production we advocate using Eulerian notation so that we can

easily extract a movement matrix M where mðs1Þ is the probabil-

ity of moving from location s1 to s2. To do so, we estimate a

habitat-selection function hðsÞ for each location, where:

h sð Þ ¼
Xnx

j¼1

bjxjðsÞ; (2)

that is where habitat preferences are modelled as a linear (e.g. basis-

spline) function of location environmental conditions. Directional

(“advective”) movement then follows the gradient of this habitat-

selection function, while the rate of random (“diffusive”) movement

d2 controls the rate at which individuals move between habitats of

similar quality. This is sometimes called a “taxis-diffusion” model,

recognizing that advection is driven by taxis towards preferred habi-

tat (Potts and Schlägel, 2020), and movement matrix M is then cal-

culated by integrating these two rates over time. Given sufficient

time, densities will converge upon the “stationary distribution” for

movement matrix M, where this stationary distribution could be

used to infer the likely long-term distribution of individuals.

We illustrate this approach by exploring seasonal movement of

sablefish Anoplopoma fimbria in the Gulf of Alaska (see

Supplementary Appendix SA for details). A similar approach has

been developed for fisheries population-dynamics (Faugeras and

Maury, 2005; Lehodey et al., 2008), although a simplified demon-

stration using R code has not been published previously to our

knowledge (see R script in Supplementary Appendix SB). We spec-

ify advective-diffusive movement where advection follows a linear

habitat-selection function based on bathymetry and bottom tem-

perature; we model “fall” movement from summer (June–August)

to the following winter (December–February) and “spring” move-

ment from winter to the following summer, where fall movement

is predicted based on fall (September–November) bottom temper-

atures and spring movement is based on spring (March–May) bot-

tom temperatures. The bathymetry layer is derived from

bathymetric soundings (Zimmermann et al., 2019), while the

spring and fall bottom temperatures are derived from a Regional

Ocean Modelling System developed for the Gulf of Alaska

(Hermann et al., 2009; Cheng et al., 2012; Coyle et al., 2019). We

specify separate habitat-selection parameters for fall and spring

movement, while both seasons share the same diffusion rate

(resulting in five movement parameters total). We model move-

ment between 531 raster cells (each 25 km� 25 km in size), using

the domain used in the ROMS model for bottom temperature as

the spatial extent. We ignore size-structured effects (i.e. movement

rates are identical for all tag records) and catchability effects (i.e.

recovery location is treated as ignorable) in this example.

We then fit this model to tag-recapture records from 97 con-

ventional tags (Echave et al., 2013) representing spring move-

ment; that is released in summer (June–August) and recaptured

the following winter (December–February), as well as 510 con-

ventional tags representing annual movement; that is released in

summer and recaptured the following summer. Spring movement

was modelled based on spring movement probabilities, while an-

nual movement was modelled based on the net effect of fall and

spring movement probabilities; parameters were estimated using

maximum likelihood (see Supplementary Appendix SB for R

script implementing approach). We then visualize fall movement

mðs1Þ for three simulated release locations (near Sand Point in

the Shumagin Islands, Seward in the central Gulf of Alaska, and

Dixon Entrance in southeast Alaska) as well as the stationary dis-

tribution for annual movement (Figure 4). This predicted winter-

time distribution is constrained to the deepest waters, in

agreement with wintertime habitat estimates using fishery data

(Rooney et al., 2018, figs. 70 and 71), as well as limited mixing be-

tween southwest Alaska (False Pass) and southcentral Alaska, but

greater mixing (more similar movement probabilities) between

the central and eastern Gulf of Alaska.

Importantly, movement matrix M could be used to determine how

local densities and catches re-distribute from one year to the next:

Db ¼ M f bð Þ � c
� �

; (3)

where this model implicitly assumes that density dependence

f ðbÞ occurs first, then catches are subtracted, and then

Figure 3. Schematic representation contrasting two approaches to Challenge # 2: Nonlocal Effects: (1) a biomass-dynamic habitat model (see
Figure 1 for details) visualizing saturated spatial dynamics involving an impact of covariates and density at any location s on productivity at
any other location s� (left-hand panel) and (2) a rank-reduced approach that links productivity and biomass using a movement matrix
(either empirical or predicted from advective-diffusive movement) and links covariates to productivity by identifying dominant features (e.g.
as empirical orthogonal functions) and specifying a response to those features such that nonlocal correlations can arise from shared response
to regional environmental conditions (right-hand panel).
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individuals move such that production is affected by density de-

pendence and catches in proportion to movement between loca-

tions (Thorson et al., 2017), and where future research could

explore the sensitivity to an alternative assumed sequence of

events. Alternatively, movement occurring at fine-spatial scales

could be binned across larger areas to calculate movement proba-

bilities between spatial strata defined in stock-assessment models

(Hanselman et al., 2015; Berger et al., 2017).

Difficulty # 3: mechanisms affecting environmental
conditions
Conventional SDMs and the biomass-dynamic habitat model

specify that all covariates xðsÞ have an exogenous and indepen-

dent effect upon production DbðsÞ, termed “direct effects”.

However, there are many cases in which covariates arise from a

dynamical process, and where ignoring dependencies among

covariates (termed “indirect effects”) will result in misunder-

standing the relationship between environment and habitat

productivity.

For example, productivity for near-bottom habitat is often af-

fected by interannual changes in the proportion of mixing water

masses, each with characteristic temperatures and nutrient con-

centrations, where these drive surface phytoplankton production,

which in turn affects near-bottom light levels. In this case, a hy-

pothetical study demonstrating a correlation between light levels

and productivity includes a direct (causal) pathway from light

levels to consumer productivity (e.g. due to changing visual for-

aging rates) but also indirect (confounder) pathways where

increased surface production drives changes in the diel-vertical

migration of zooplankton prey. Habitat scientists might then be

tasked with predicting the likely consequences of an alternative

mechanism for changes in light levels; for example arising from

increased suspended sediment due to coastal development. This

will trigger changes in productivity associated with direct (causal)

associations from light levels to productivity but will not neces-

sarily be associated with indirect pathways.

One approach to address this difficulty is to explicitly model

the dependencies among variables and covariates using structural

equation models, SEM (Kaplan, 2001); this approach has been

demonstrated in terrestrial habitat models (Grace and Irvine,

2020; Schoolmaster et al., 2020) but has seen little use in marine

habitat sciences [although see van Denderen et al. (2014) for an

exception] (Figure 5). The SEM approach introduces a new sub-

model representing dependencies among latent variables y�(s)

(i.e. variables that are measured imprecisely and hence never

known exactly):

y� sð Þ ¼ Py� sð Þ þ Cz sð Þ þ d sð Þ; (4)

where y�ðsÞ includes population density dðsÞ as well as environ-

mental variables xðsÞ that have modelled dependencies at each lo-

cation s, thereby eliminating the distinction arising in linear

models between dependent variable dðsÞ and independent varia-

bles xðsÞ. Meanwhile, P represents dependencies among these bi-

ological and habitat variables, zðsÞ is exogenous variables (i.e.

experimental treatments) and C includes responses to these, and

dðsÞ represents residual variability. The SEM is completed by

Figure 4. Illustration of output from an advective-diffusive movement model using a habitat-selection function based on bathymetry and
bottom temperature, applied to seasonal movement for sablefish restricted to the Gulf of Alaska. Movement is predicted based on locations
of tags released in summer and recaptured the following winter (“fall movement”), as well as released in summer and recaptured the
following summer (“annual movement”), where the difference is used to infer winter-to-summer (“spring”) movement despite no tags being
released during winter for direct measurement. This shows the stationary distribution for numerical density (a.k.a. expected habitat
utilization) given annual summer-to-summer movement (top left) as well as spring movement probabilities based on a tag released at one of
three locations (red dot) representing releases in the western Gulf of Alaska (top right), central Gulf of Alaska (bottom left), and eastern Gulf
of Alaska (bottom right). Note that each panel has a sum of one across all spatial locations.
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specifying a measurement model for measurements yðsÞ of latent

variables y�ðs):

y sð Þ ¼ y� sð Þ þ e sð Þ; (5)

where e is measurement errors, and we simplify presentation by as-

suming that z is measured without error and each response is mea-

sured individually [see Kaplan, 2001 for details). This SEM

formulation reduces to a linear model in some cases. However, it

can also address a broader set of questions, e.g. where fish density

dðsÞ is positively affected by the density of nearby corals xðsÞ (e.g.

by providing refuge from predators), but where coral density is also

reciprocally increased by fish density (e.g. by increased nutrient in-

flux from fish digestion or removal of predators). Instances like this

involve cyclic dependencies among variables and violate the as-

sumption of exogeneity required by conventional linear models.

Continuing our previous example, water-mass proportion x1ðsÞ
and nearby coastal development rates x2ðsÞ both might drive light

levels y1ðsÞ which in turn affects population density y2 sð Þ. In this

case, process research might support the assumption that coastal

development x2ðsÞ has no direct effect upon density y2 sð Þ, such

that c2;2 ¼ 0, but is still correlated with densities via its effect upon

light levels and resulting indirect effect upon densities,

x2ðsÞ ! y1ðsÞ ! y2 sð Þ. In this example, light levels then “mediate”

the mechanism by which coastal development affects population

density (Pearl, 2009), and process research is necessary to measure

dependencies among variables (P) in order to accurately predict

consequences of coastal development. Relationships among physi-

cal variables can be explored or predicted using earth systems mod-

els (ESM; e.g. Kearney et al., 2020), but indirect habitat effects

resulting from changes in density for other mobile species are not

typically represented by ESM and will require ecological research

linking habitat to top-down regulation.

Finally, we note that the conventional SDM can in some cases

estimate environmental drivers of density using monitoring (ob-

servational) data without experimental manipulation; by

extension the biomass-dynamic habitat model can presumably

predict some environmental drivers of productivity. However, it

is clearly true that monitoring data cannot be used to estimate

associations with environmental conditions that have never been

observed previously. For example, habitat managers must provide

advice regarding permitting commercial activities with new and

unknown potential consequences. Increased Arctic shipping can

increase ocean noise with resulting behavioural and distributional

responses (Ivanova et al., 2020), and new oil dispersants can

change the physiological impacts of oil exposure on fishes

(Pasparakis et al., 2019). In these cases, analysts must specify the

effect of these covariates at known values based on prior process

(laboratory and field experimental) research, or apply meta-

analytic research to predict unknown effects based on similar

conditions elsewhere (Thorson et al., 2015a). This is easily done

within structural equation models by treatment as exogenous var-

iables, zðsÞ. In these and other instances, SEM represents a formal

way to include process research informing mechanistic relation-

ships among covariates within habitat models.

Foreseeable limitations to proposed approach
In the preceding, we have outlined three potential approaches to

address common difficulties arising when predicting future

changes in habitat-specific fishery production arising from spatial

regulations. We here note a few limitations that are shared among

methods, along with potential directions for research to address

these limitations:

(1) Most importantly, these approaches are constrained by the

availability of habitat-specific monitoring data (to measure

aggregate bðsÞ or stage-specific biomass bðsÞ), tagging data

(to measure movement M and nonlocal impacts), and pro-

cess research to identify likely mechanisms (for use in struc-

tural equation models) and stage-specific rates (for use in

growth transition matrix G). Modelling will never substitute

for monitoring data and process research. However, ready-

made and widely-accepted models can be used to extend the

scope of inference arising from monitoring data and process

research, and thereby increase the value (and hence attrac-

tiveness for funding) of new data and process research.

Despite short-term trade-offs in funds for monitoring, pro-

cess research, and model development, we therefore see a

long-term positive feedback whereby developing habitat-

specific productivity models and expanded data collection

and process research improves the value of both efforts.

(2) In cases with limited data (e.g. when modelling habitat-

specific production of benthic infauna, secondary producers,

or rare/nontarget fishes), these approaches will likely require

simplifications to implement in practice. In the case of

movement, for example this might involve isotropic and spa-

tially constant diffusion rates, along with meta-analytic in-

formation about habitat selection to parameterize (rather

than estimate) the habitat-selection function; such an ap-

proach could be used to match movement patterns from his-

torical process research, or to generate movement scenarios

for use in stock assessment. Similarly, growth and mortality

rates in the size-transition matrix G will be unknown for

many species; meta-analysis may again be necessary to define

the likely improvement in survival in different potential

habitats.

Figure 5. Schematic representation contrasting three approaches to
Challenge # 3: Dependencies among Covariates: (1) the biomass-
dynamic habitat model (left panel) assumes that all covariates are
exogenous and independent, (2) the saturated structural model
(middle panel) assumes that all covariates are mechanistically linked,
resulting in a model that is not identifiable based on observational
data, and (3) a structural equation model informed by process
research can result in an identifiable model that includes
dependencies among covariates (in this case showing the
hypothetical impact of atmospheric carbon dioxide and depth on
bottom temperature and depth, with resulting impacts on local
productivity).
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(3) Finally, there remain some questions about how best to im-

plement habitat-specific models numerically and computa-

tionally. This involves improved approximations to spatial

modelling (Fuglstad et al., 2014), improved computational

methods for estimating parameters (Kristensen et al., 2016),

and improved terms of reference to share data between agen-

cies and jurisdictions at relevant scales (Maureaud et al.,

2021). We are optimistic that these resources will continue

to improve over the coming decade.

An argument for coordinating habitat research
We conclude with several recommendations to coordinate habitat

research towards this common goal:

(1) Coordinate monitoring surveys, process research, and model

development, so that these efforts are focused to predict con-

sequences of spatial regulations upon fishery productivity;

(2) Co-develop these methods in conjunction with decision the-

ory based on stakeholder input (soliciting values, identifying

potential management procedures, and collaborative design

of management strategy evaluation studies);

(3) Reduce costs through paradigmatic models, common parame-

terizations, and sharing information via meta-analyses.

We discuss each of these in detail below.

Coordinate monitoring surveys, process research, and
model development
Most importantly, we emphasize that monitoring, process re-

search, and model development are all necessary to resolve these

three difficulties. For example, deep-sea corals (Winship et al.,

2020) and benthic infaunal communities (Eigaard et al., 2020)

have both been analyzed using SDMs to support “benthic

habitat-impact assessments”. Translating these SDMs into

biomass-dynamic habitat models would likely require aggregating

available process research and monitoring data to identify appro-

priate taxonomic resolution (data-rich species, or higher-level

taxa with available information), combined with:

(1) Some measurement of human impacts used to calculate cu-

mulative impacts [c in (3)]; either direct measurements of

coral catches from bycatch records, or extrapolating experi-

mentally measured disturbance rates to the entire area im-

pacted by individual fishing gears (Zhou et al., 2009;

Rijnsdorp et al., 2020);

(2) Process research regarding growth rates used to calculate stage-

transition rates [G in (1)]; for corals either by flagging and peri-

odically re-measuring their individual size or validated growth

rings or other physiological markers (Andrews et al., 2002), and

for infaunal communities by measuring recovery rates after ex-

perimental trawling (Sciberras et al., 2018);

(3) Process research for habitat connectivity [M in (3)], perhaps

involving larval advection and settlement rates to parameter-

ize passive advective movement within a stock-recruitment

model, or settlement plates to directly measure spatial varia-

tion in recruitment for corals (Cowen and Sponaugle, 2009);

(4) Field experiments measuring the impact of corals and/or

benthic infauna on fish demographics/density and vice-versa

[P in (4)]; for corals measuring predation and bioenergetics

rates of fishes under alternative coral treatments (e.g.

Beukers and Jones, 1998) as well as reciprocal impact of fish

on coral densities (e.g. Allgeier et al., 2016), and for infauna

measuring fish stomach contents and condition before/after

experimental trawling;

(5) Development and testing of models (and associated soft-

ware) to integrate fishing and non-fishing effects (c), larval

movement and settlement rates (M), individual growth rates

(G), as well as associations between corals and other habitat

variables (P).

We note that this is not a “complete” list of work needed to measure

the impact of corals or benthic infauna on fisheries productivity;

presumably habitat assessments will define their scope iteratively in

consultation with local resource managers and stakeholders, and this

iterative scoping process will be used to define “best available scien-

ce” for a given policy arena (e.g. Levin et al., 2009).

Evaluate likely performance of spatial management
procedures
Stock-assessment scientists developed assessment models at the

same time that fisheries managers developed new methods to

monitor abundance and enforce regulatory changes. For example,

per-recruit analysis co-evolved with international discussions re-

garding potential versus realized yield (Holt, 1958). Scientists and

managers have subsequently co-evolved a toolbox of gear regula-

tions affecting size and age selectivity, annual catch limits, and

bycatch regulations that can be represented within conventional

assessment models, thereby facilitating simulation testing of likely

management performance (e.g. fig. 5 in Carruthers and Hordyk,

2018). Due to this long history, it is therefore unsurprising that

trade-offs associated with annual catch limits and other manage-

ment actions have been thoroughly studied (Worm et al., 2009;

Gutiérrez et al., 2011; Melnychuk et al., 2012).

By contrast, spatial regulations include a different set of man-

agement tools including (to name a few) move-on rules, perma-

nent and seasonal closures, and cooperative agreements regarding

fishing gear (McConnaughey et al., 2020). SDMs have been used to

evaluate potential impacts of permanent closures for marine pro-

tected area design (e.g. using Marxan; Smith et al., 2009), but there

are few options for off-the-shelf software to evaluate likely fishery

performance and impacts of spatial regulations. In particular, in-

corporating stage-structure, movement, and structural-equation

modelling approaches into spatial analysis will allow predictions of

changing productivity at one location arising from potential man-

agement changes at other locations. Models (and associated soft-

ware) to predict productivity changes from spatial management

could then be used independently and transparently to evaluate the

likely performance of proposed management procedures (Punt

et al., 2016); scientific reviewers and stakeholders will have more

confidence in advice from this process in cases where modelling

efforts have been well validated (Winship et al., 2020).

Reduced cost through paradigmatic models, common
parameterizations, and sharing information via meta-
analyses
We recognize that co-developing scientific and management

practices that can evaluate spatial regulations by predicting their
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likely impact on productivity is a large enterprise. However, we

argue that this can be accomplished efficiently through three

steps:

(1) Paradigmatic models: First, stock assessment has developed a

set of paradigmatic models, including per-recruit, surplus

production, delay-difference, and virtual population analysis

models (Hilborn and Walters, 1992; Quinn and Deriso,

1999). These models are often used to illustrate different

principles for how demographic rates can be measured from

field data and represent a diverse set of mechanistic and sta-

tistical approaches to understanding population-dynamics.

By contrast, habitat analysis typically involves SDMs and

IBMs, and neither can clearly illustrate the three difficulties

outlined in this paper. We therefore believe that the simple

extensions to the biomass-dynamic habitat model presented

here can serve as “paradigmatic models” to illustrate these

principles, for use in classrooms or stakeholder presenta-

tions, and that continued development of “paradigmatic”

habitat models will accelerate efforts to connect habitat sci-

ence with fisheries management.

(2) Common parameterizations: Paradigmatic models for stock

assessment typically use a small set of parameters (growth

rate k, asymptotic size Linf , catchability coefficient q), where

parameters can be easily converted from one model to an-

other (McAllister et al., 2001). Consequently, there is a large

literature on how to measure these common parameters

given different technologies and field-sampling designs. By

contrast, there is less awareness of how to inter-convert

parameters within spatial analysis; for example between a

state-space movement model (Jonsen et al., 2003), a habitat-

selection model with advective-diffusive dynamics (Thorson

et al., 2017), or a spatially stratified movement-rate model

(Lehodey et al., 2008; Hanselman et al., 2015). This then

results in less opportunity to compare parameter estimates

between analytical approaches, species, and regions.

(3) Sharing information via meta-analysis: Finally, the common

parameterizations within population-dynamics and stock-

assessment models lead to easy construction of databases

containing results for many stocks (Froese, 1990). Meta-

analytic data, in turn, allow for comparative research across

stocks, such that general patterns can be identified (Charnov

et al., 2013), missing values can be predicted (Thorson,

2020), and meta-analyses can be evaluated and improved

(Patrick et al., 2014). Parameters representing movement

rates, thermal preferences, and habitat recovery rates are all

likely candidates for continued meta-analysis (Hiddink et al.,

2017; Burrows et al., 2019).

Grand habitat challenge
We have argued that habitat science should follow stock assess-

ment in developing a theory and practice for predicting the im-

pact of spatial management regulations (including fishing and

other sectors) on resulting fishery productivity (a Grand Habitat

Challenge). We then introduced the biomass-dynamic habitat

model to elucidate how current SDMs can be combined with typ-

ical stock-assessment variables to address this Grand Habitat

Challenge and then summarized approaches (and associated re-

search programs) to address three difficulties that arise for habitat

research.

We end by noting that many difficulties facing fisheries science

are expressed spatially and therefore could be aided by coordi-

nated efforts to tackle this Grand Habitat Challenge. For example,

climate change is impacting some habitats more than others,

while changes in shipping, aquaculture, and offshore energy de-

velopment are also expressed as spatial impacts. These and other

stressors are often listed as components of Ecosystem-Based

Management, EBM (NMFS, 2017; see Box 2). Here, however, we

have noted several ways that habitat research poses extra analytic

difficulties beyond those for EBM in general. We therefore en-

courage ongoing coordination of habitat research in national and

international research venues (NMFS, ICES, PICES, etc.); these

unique difficulties will require many lifetimes of scientific re-

search, and therefore requires national and international coordi-

nation if they are to be addressed by 2030.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Data availability statement
The sablefish tagging example (Figure 4) includes three types of

data. The tag release and recovery locations are commercial infor-

mation and can be obtained from the Alaska Fisheries Science

Center upon formal request and approval. A simulated version of

these data are provided in Supplementary Appendix SB. The ba-

thymetry and bottom temperature data are obtained from sources

listed in Supplementary Appendix SA, and the version of these

data used is available in Supplementary Appendix SB.
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